Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Kazuya kikuchi

Kazuya kikuchi

Osaka University, Japan

Title: Mesoporous silica nanoparticles for sensitive 19f magnetic resonance imaging, fluorescence imaging, and doxorubicin drug delivery

Biography

Biography: Kazuya kikuchi

Abstract

MRI (Magnetic Resonance Imaging) has been clinically used since it yields images of deep regions in living animal bodies. We have focused on 19F MRI. 19F MRI is suitable for monitoring particular signals concerning biological phenomena because 19F MRI shows little endogenous background signals. Thus, 19F MRI probes that can visualize biological functions have been increasingly reported. We have developed the 19F MRI probes to detect protease activity and gene expression on the basis of paramagnetic resonance enhancement (PRE) effect. We also have developed a novel 19F MRI contrast agent, fluorine accumulated silica nanoparticle for MRI contrast enhancement, which is composed of a perfluorocarbon core and a robust silica shell. Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. A novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) contrast agents inside MSNs, will be introduced. The nanoparticles were labeled with fluorescent dyes and functionalized with small molecule-based ligands for active targeting. This drug delivery system facilitated the monitoring of the biodistribution of the drug carrier by dual modal imaging (NIR/19F MRI). Furthermore, we demonstrated targeted drug delivery and cellular imaging by the conjugation of nanoparticles with folicacid. An anticancer drug (doxorubicin, DOX) was loaded in the pores of folate-functionalized MSNs for intracellular drug delivery. The release rates of DOX from the nanoparticles increased under acidic conditions, and were favorable for controlled drug release to cancer cells.