Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Alessandro Grattoni

Alessandro Grattoni

Houston Methodist Research Institute, USA

Title: Silicon nanochannel platforms for tightly controlled therapeutic release and immunoisolated cell transplantation

Biography

Biography: Alessandro Grattoni

Abstract

Silicon nanochannel platforms leveraging nano-constrained diffusion for tightly controlled therapeutic release and immunoisolated cell transplantation: Through cutting-edge implementation of fabrication techniques developed in the microelectronics industry, our group is able to create dense arrays of nanochannels ranging from nanometers to millimeters in height with a precision of ±10%. Two device platforms have been invented in order to leverage these capabilities: a silicon nanochannel membrane for drug delivery and a surface-modified polymer system for cell transplantation. The drug delivery system employs adaptable channel sizes down to 2.5 nm to closely constrain molecular transport, linearizing Fickian diffusion to achieve constant administration. Implantable drug delivery devices are fashioned by integrating these nanochannel membranes within bioinert metallic or polymeric capsules. These devices are minimally-invasive, can be implanted subcutaneously, and provide linear (zero-order) release of drugs and biomolecules. Clinically-relevant dosages of testosterone for hormone replacement have been released for more than 6 months at a constant rate with this platform. Further innovations include active, on-board control systems to permit remote manipulation or activation, enabling telemedicine or chronotherapy regimens. The polymeric cell transplantation system was primarily developed for pancreatic islet allografts. This device, the “NanoGland”, is used to provide an immunoprotective environment for bioactive allografts by isolating cells from inflammation and rejection mechanisms while permitting interaction with glucose, insulin, nutrients, and waste exchange from the interstitial environment. Combining the NanoGland with the silicon nanochannel membranes has allowed controlled release of immunosuppressive material or factors for cell growth and vascularization following cell transplantation.

Speaker Presentations

Speaker PPTs Click Here